High-dimensional Structured Additive Regression Models: Bayesian Regularisation, Smoothing and Predictive Performance

نویسندگان

  • Thomas Kneib
  • Susanne Konrath
  • Ludwig Fahrmeir
چکیده

Data structures in modern applications frequently combine the necessity of flexible regression techniques such as nonlinear and spatial effects with high-dimensional covariate vectors. While estimation of the former is typically achieved by supplementing the likelihood with a suitable smoothness penalty, the latter are usually assigned shrinkage penalties that enforce sparse models. In this paper, we consider a Bayesian unifying perspective, where conditionally Gaussian priors can be assigned to all types of regression effects. Suitable hyperprior assumptions on the variances of the Gaussian distributions then induce the desired smoothness or sparseness properties. As a major advantage, general Markov chain Monte Carlo simulation algorithms can be developed that allow for the joint estimation of smooth and spatial effects and regularised coefficient vectors. Two applications demonstrate the usefulness of the proposed procedure: A geoadditive regression model for data from the Munich rental guide and an additive probit model for the prediction of consumer credit defaults. In both cases, high-dimensional vectors of categorical covariates will be included in the regression models. The predictive ability of the resulting highdimensional structure additive regression models compared to expert models will be of particular relevance and will be evaluated on cross-validation test data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propriety of Posteriors in Structured Additive Regression Models: Theory and Empirical Evidence

Structured additive regression comprises many semiparametric regression models such as generalized additive (mixed) models, geoadditive models, and hazard regression models within a unified framework. In a Bayesian formulation, nonparametric functions, spatial effects and further model components are specified in terms of multivariate Gaussian priors for high-dimensional vectors of regression c...

متن کامل

Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations

Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...

متن کامل

www.econstor.eu Propriety of Posteriors in Structured Additive Regression Models: Theory and Empirical Evidence

Structured additive regression comprises many semiparametric regression models such as generalized additive (mixed) models, geoadditive models, and hazard regression models within a unified framework. In a Bayesian formulation, nonparametric functions, spatial effects and further model components are specified in terms of multivariate Gaussian priors for high-dimensional vectors of regression c...

متن کامل

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...

متن کامل

Bayesian hierarchical linear mixed models for additive smoothing splines

Bayesian hierarchical models have been used for smoothing splines, thin-plate splines, and L-splines. In analyzing high dimensional data sets, additive models and backfitting methods are often used. A full Bayesian analysis for such models may include a large number of random effects, many of which are not intuitive, so researchers typically use noninformative improper or nearly improper priors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009